Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.12.29.522275

RESUMO

The Omicron variant continuously evolves under the humoral immune pressure obtained by vaccination and SARS-CoV-2 infection and the resultant Omicron subvariants exhibit further immune evasion and antibody escape. Engineered ACE2 decoy composed of high-affinity ACE2 and IgG1 Fc domain is an alternative modality to neutralize SARS-CoV-2 and we previously reported its broad spectrum and therapeutic potential in rodent models. Here, we show that engineered ACE2 decoy retains the neutralization activity against Omicron subvariants including the currently emerging XBB and BQ.1 which completely evade antibodies in clinical use. The culture of SARS-CoV-2 under suboptimal concentration of neutralizing drugs generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against engineered ACE2 decoy. As the efficient drug delivery to respiratory tract infection of SARS-CoV-2, inhalation of aerosolized decoy treated mice infected with SARS-CoV-2 at a 20-fold lower dose than the intravenous administration. Finally, engineered ACE2 decoy exhibited the therapeutic efficacy for COVID-19 in cynomolgus macaques. Collectively, these results indicate that engineered ACE2 decoy is the promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation can be considered as a non-invasive approach to enhance efficacy in the treatment of COVID-19.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
2.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.11.17.468963

RESUMO

Many specimens suffer from low particle density and/or preferred orientation in cryoEM specimen grid preparation, making data collection and structure determination time consuming. We developed an epoxidized graphene grid (EG-grid) that effectively immobilizes protein particles by applying an oxidation reaction using photoactivated ClO 2 • and further chemical modification. The particle density and orientation distribution are both dramatically improved, having enabled us to reconstruct the density map of GroEL and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), at 1.99 and 2.16 Å resolution from only 504 and 241 micrographs, respectively. A low concentration sample solution of 0.1 mg ml −1 was sufficient to reconstruct a 3.10 Å resolution density map of SARS-CoV-2 spike protein from 1,163 micrographs. The density maps of V 1 -ATPase, β-galactosidase, and apoferritin were also reconstructed at 3.03, 1.81, and 1.29 Å resolution, respectively. These results indicate that the EG-grid will be a powerful tool for high-throughput cryoEM data collection to accelerate high-resolution structural analysis of biological macromolecules.

3.
researchsquare; 2021.
Preprint em Inglês | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-963907.v1

RESUMO

Breakthrough infection is often observed for the SARS-CoV-2 Delta variant, and neutralizing antibody levels are associated with vaccine efficiency 1 . Recent studies revealed that not only anti-receptor binding domain (RBD) antibodies 2 but also antibodies against the N-terminal domain (NTD) play important roles in positively 3,4 or negatively 4-8 controlling SARS-CoV-2 infectivity. Here, we found that the Delta variant completely escaped from anti-NTD neutralizing antibodies, while increasing responsiveness to anti-NTD infectivity-enhancing antibodies. Cryo-EM analysis of the Delta spike revealed that epitopes for anti-NTD neutralizing antibodies are structurally divergent, whereas epitopes for enhancing antibodies are well conserved with wild-type spike protein. Although Pfizer-BioNTech BNT162b2-immune sera neutralized the original Delta variant, when major anti-RBD neutralizing antibody epitopes remaining in the Delta variant were disrupted, some BNT162b2-immune sera not only lost neutralizing activity but became infection-enhanced. The enhanced infectivity disappeared when the Delta NTD was substituted with the wild-type NTD. Sera of mice immunized by Delta spike, but not wild-type spike, consistently neutralized the Delta variant lacking anti-RBD antibody epitopes without enhancing infectivity. Importantly, SARS-CoV-2 variants with similar mutations in the RBD have already emerged according to the GISAID database and their pseudoviruses were resistant to some BNT162b2-immune sera. These findings demonstrate that mutations in the NTD, as well as the RBD, play an important role in antibody escape by SARS-CoV-2. Development of effective vaccines against emerging variants will be necessary, not only to protect against infection, but also to prevent further mutation of SARS-CoV-2.

4.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.08.22.457114

RESUMO

mRNA-based vaccines provide effective protection against most common SARS-CoV-2 variants. However, identifying likely breakthrough variants is critical for future vaccine development. Here, we found that the Delta variant completely escaped from anti-N-terminal domain (NTD) neutralizing antibodies, while increasing responsiveness to anti-NTD infectivity-enhancing antibodies. Although Pfizer-BioNTech BNT162b2-immune sera neutralized the Delta variant, when four common mutations were introduced into the receptor binding domain (RBD) of the Delta variant (Delta 4+), some BNT162b2-immune sera lost neutralizing activity and enhanced the infectivity. Unique mutations in the Delta NTD were involved in the enhanced infectivity by the BNT162b2-immune sera. Sera of mice immunized by Delta spike, but not wild-type spike, consistently neutralized the Delta 4+ variant without enhancing infectivity. Given the fact that a Delta variant with three similar RBD mutations has already emerged according to the GISAID database, it is necessary to develop vaccines that protect against such complete breakthrough variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA